\(\int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx\) [196]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 104 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\frac {2 \sqrt [4]{-1} a^{3/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

2*(-1)^(1/4)*a^(3/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+(2-2*I)*a^(3/2)*ar
ctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3636, 3625, 211, 3680, 65, 223, 209} \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\frac {2 \sqrt [4]{-1} a^{3/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \]

[In]

Int[(a + I*a*Tan[c + d*x])^(3/2)/Sqrt[Tan[c + d*x]],x]

[Out]

(2*(-1)^(1/4)*a^(3/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((2 - 2*
I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3636

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dis
t[2*a, Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Dist[b/a, Int[(b + a*Tan[e + f*x])*(Sqr
t[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rubi steps \begin{align*} \text {integral}& = i \int \frac {\sqrt {a+i a \tan (c+d x)} (i a+a \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx+(2 a) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {a^2 \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac {\left (4 i a^3\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {(2-2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = \frac {(2-2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {2 \sqrt [4]{-1} a^{3/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.49 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\frac {2 (i a \tan (c+d x))^{3/2} \left (\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)}-\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {a+i a \tan (c+d x)}\right )}{d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[(a + I*a*Tan[c + d*x])^(3/2)/Sqrt[Tan[c + d*x]],x]

[Out]

(2*(I*a*Tan[c + d*x])^(3/2)*(Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]] - Sqrt[2
]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[a + I*a*Tan[c + d*x]]))/(d*Tan[c +
 d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (82 ) = 164\).

Time = 1.08 (sec) , antiderivative size = 324, normalized size of antiderivative = 3.12

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} \left (i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )-\ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}+4 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}-2 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(324\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} \left (i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right )-\ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}+4 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}-2 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(324\)

[In]

int((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^(1/2)*a^2*(I*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))-ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(
1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)+4*I*ln(1/2*(2*I*a*tan(d*x+c)+2*
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)-2*ln(1/2*(2*I*a*tan(d*x+c)+2*(a
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^
(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 451 vs. \(2 (76) = 152\).

Time = 0.26 (sec) , antiderivative size = 451, normalized size of antiderivative = 4.34 \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\frac {1}{2} \, \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (2 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) - \frac {1}{2} \, \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (2 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) - \frac {1}{2} \, \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) + \frac {1}{2} \, \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) \]

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((
-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(-8*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c
)/a) - 1/2*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))
*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(-8*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*
x - I*c)/a) - 1/2*sqrt(-4*I*a^3/d^2)*log((sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)
)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(-4*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d
*x - I*c)/a) + 1/2*sqrt(-4*I*a^3/d^2)*log((sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1
))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(-4*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*
d*x - I*c)/a)

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}{\sqrt {\tan {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(3/2)/tan(d*x+c)**(1/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(3/2)/sqrt(tan(c + d*x)), x)

Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\tan \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)/sqrt(tan(d*x + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Non regular value [0] was discarded and replaced randomly by 0=[-86]Warning, replacing -86 by -35, a substi
tution vari

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{\sqrt {\mathrm {tan}\left (c+d\,x\right )}} \,d x \]

[In]

int((a + a*tan(c + d*x)*1i)^(3/2)/tan(c + d*x)^(1/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(3/2)/tan(c + d*x)^(1/2), x)